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Estimation of residual stresses in SiC/Ti—15-3
composites and their relaxation during a fatigue test
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Residual stresses induced by cooling down from the elaboration process in SiC/Ti-15-3

composite were calculated by the finite element model using MARC and MENTAT software.
An analytical model (derived from those of Eshelby and of Mikata and Taya) already used for
ceramic matrix composites has also been used in this study for elementary composites. The
influence of uncertainty on thermomechanical properties and also the influence of fibre

packing and spacing were also studied. Then, evolution (relaxation) of the thermal residual
stresses (TRS) during a fatigue test were investigated. Results show that the TRS decreased
rapidly during the first cycles and then became almost constant at about one-third of their

initial values.

1. Introduction

Recent efforts in the development of continuously
reinforced high temperature metal matrix composites
(MMCs) represent a response to the need for materials
that can retain acceptable specific mechanical proper-
ties at elevated service temperature. Advanced com-
posites show considerable promise for weight and
volume critical application, for example, aircraft and
space vehicles. Improvements in gas turbine engine
and hypersonic vehicle technology are two potential
benefits of the use of such materials. Typically, MMCs
are fabricated by stacking alternate layers of thin
metal matrix foils and ceramic fibres, and consolidat-
ing at elevated temperature.

When a MMC is cooled down to room temperature
from the fabrication or annealing temperature, ther-
mal residual stresses (TRS) can be induced in the
composite as a result of the mismatch of the coeffi-
cients of thermal expansion (CTE) between the metal
matrix and the reinforcement. The magnitude of the
TRS may have a very important effect on the yield
stress and fatigue strength of the MMC.

The metal matrix composite used herein in
SCS-6/Ti—15-3 where Ti—15-3 is the shortened des-
ignation for Ti—15V—-3Cr—3Al-3Sn and the manufac-
turer’s designation for the silicon fibres is SCS-6 which
consists of a carbon core (diameter = 30 pm) embed-
ded in a SiC matrix (thickness = 55 um) deposited
by chemical vapour deposition and then covered by
an orthotropic carbon layer (thickness =3 pum).
Ti—15-3 is currently under evaluation as a matrix
material for high-temperature metal matrix com-
posites since it can be economically cold-formed into
relatively thin sheets while retaining good mechanical
properties.
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TRS were calculated assuming a temperature
change of — 550°C; the temperature 550 °C is ap-
proximately one-half of the melting point of the
Ti—15-3 matrix. It was assumed that any residual
stresses that developed during fabrication of the com-
posite would be relieved due to relaxation at temper-
atures greater than one half the melting point of the
matrix [1].

2. Analytical model

2.1. Bulk model in composites

The general features of the differential thermal resid-
ual stress state could be seen from the formulation of
Turner [2]

c; = Ki(oe — o,)AT (1)

where K; was the bulk modulus of the ith phase,
o, was the volume CTE of the composite, o; was the
volume CTE of the ith phase and AT was the differ-
ence between the process temperature and the room
temperature (this value is negative). The value of
o, was calculated from

o = [ KV 4+ o, K, (1 — Vy)]/

[KiVi + K(1 — V)] (2)

for a two-phase system. V; was the volume fraction of
the ith phase. Equations 1 and 2 assumed that both
materials were elastic and that no cracks were present.
The stresses calculated were equivalent to the hydro-
static stresses. This method was very easy and could
be quickly applied to any composite material. How-
ever, it did not give the evolution of TRS on the radial
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direction and so it was not possible to have informa-
tion about stress distribution in the composite. This
method did not give informations about radial, hoop
and axial stresses; thus, it clearly appeared that ap-
plying other methods were more suitable.

2.2. Analytical cylinder model

This analytical model was based upon stress—strain
equilibrium equations between the constituents under
given boundary conditions of applied deformations.
The set of resulting equations was then solved by
a standard iterative numerical procedure.

This model was derived from that of Mikata and
Taya’s and had already been used for the determina-
tion of residual stresses in the case of ceramic matrix
composite [3, 4].

A schematic diagram of the monocomposite show-
ing orientation of TRS is given in Fig. 1. It was as-
sumed that stresses were induced by a uniform change
of the temperature field. This hypothesis was reason-
able since end of the cool-down step was of primary
importance for residual stresses determination. But
the relatively slow rate of cooling and the high thermal
conductivity of both materials provided additional
reasons.

Hoop, radial and axial TRS components in the fibre
and in the matrix were obtained from the following
basic equations

c =Ce — CaAT (3)

where C referred to the stiffness tensors, € to the strain
tensor and o to the CTE tensor. AT was the temper-
ature change.

The following boundary conditions were assumed
(u was the radial displacement, w the axial displace-
ment, the subscripts 1 and 2 referred to the matrix and
the fibre respectively)

1. A zero radial stress at the external surface of the
matrix cylinder

oM =0  at R=R(1) 4)
z
A
Fibre (SCS6)
Matrix (Ti15-3)
» Radial

distance

Figure 1 Schematic diagram showing the monocomposite and the
stress components. R, radial stresses (*); H, hoop stresses (c™); 4,
axial stresses (c4).
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2. Continuity of displacement across the fibre—matrix
interface

ul =u2

wl = w2 at R = R(2) (5)

3. Continuity of radial stress at the fibre—matrix
boundaries

GRI — GRQ)

at R =R(2) (6)
4. Sum of axial stresses in both materials was zero
R2 R1
J G;Z)l"dl" + J G;I)rdr =0 (7)
0 R2

Interactive effects from the actual composite were
not taken into account in this analytical analysis.

Equations of the residual stresses could be ex-
pressed as follows

S, _c‘">< _ o > + C(”’<A +B—>+ CY3F
r?

_pYAT ®)
B Bn
Gy = CV) <An + —f> + ¥ (An - —2> + COF
r r
N ©)
0, =2C0%An + CF — BYAT (10)

where
BY = (CY + Ciaf + Clhop” (1)
(") _2c(1"; (;;l) + C(") (n) (12)

and C were the components of stiffness tensor of
material n; n referred to the order of the concentric
cylinder (n = 1for the matrixandn = 2 for the fibre);
E was the Young’s modulus; AT was the temperature
change (AT = — 550°C). Coefficients 4An, Bn and
F depended on the material properties (Young’s
modulus, Poisson’s ratio and CTE) and radial posi-
tion. Closed form equations for An and Bn were deter-
mined by boundary conditions. For reasons of brevity
the resulting equations for TRS will not be detailed in
the present paper. They are available in reference [6].
The influence of neighbouring fibres was simulated
by the presence of a third concentric cylinder with
properties of the composite calculated by rules of
mixtures (Section 2.5). The influence of the thickness of
the surrounding composite was also studied here.

2.3. Finite Element Model Analysis of TRS
The TRS in monocomposites and usual composites
were computed using the MARC and MENTAT finite
element codes.

A two-dimensional axisymmetrical analysis was
conducted for the monocomposite, whereas for the
composite a three dimensional analysis was preferred.
The volume cells were modelled by two- or three-
dimensional isoparametric elements as indicated in
Table I. The meshes constructed for the analysis are
exemplified in Figs 2 and 3 which show those meshes



TABLE I Data on the meshes constructed for the finite element analyses

Numbers of Element Type of
elements type analysis
Monocomposites
without SC 675 8 nodes 2D
with SC 1050 rectangles axisymmetrical
Composites 12352 27 nodes cubes

10 nodes tetrahedrons 3D
15 nodes triangular
prisms

SC = surrounding composite.

Matrix

Interfacial
<+—

Figure 2 Mesh used for the FEM calculation of residual stresses in
the monocomposite without surrounding composite (z is the sym-
metry axis).

>Matrix

Fibre

Figure 3 Example of mesh used for the FEM analysis of the com-
posite.

constructed for the monocomposite and for the unit
cell of composite.

The boundary condition for this problem were
straightforward. They should be such that the sym-
metry was retained, i.e. the symmetry planes should
remain in-plane and the angles between planes should
be retained. Therefore all the nodes at the symmetry
surfaces were constrained to have the same normal
displacement.

Various fibre packing arrangements including cubic
(Fig. 4) and hexagonal patterns (Fig. 5) were exam-
ined. Fibres were either uniformly distributed (Figs 4
and 5) or not (in contact, for example, as shown in
Fig. 6). Influence of the distance between fibres were
also studied here. A cubic packing arrangement only
was considered for this latter case because it was
assumed to be more representative of the situation in
reality and also because it was observed that fibre
packing arrangement exerted a limited influence on
TRS distributions. The unit cell repeated itself

|~ Fibre

| Matrix

40 146 80

Figure 4 Example of FEM unit cell model for the analysis of TRS in
composite with a uniform distribution of fibres (cubic fibre packing
arrangement). Dimension in pm.

| — Fibre

Matrix

\

120 146

Figure 5 Example of FEM unit cell model for the analysis of TRS in
composite with fibres in contact (cubic fibre packing arrangement).
Dimensions in pum.

throughout the composite when the fibres were as-
sumed to be identically packed throughout the entire
composite. The residual stresses in the composite
could be found by an analysis of this representative
volume cell.

The one-unit fibre model was vertically stacked to
simulate a four-ply model and an eight-ply model.
This arrangement of the model geometry resulted in
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Fibre

Matrix

Figure 6 Example of FEM unit cell model for the analysis of TRS in
composite with fibres in contact (hexagonal fibre packing arrange-
ment). Dimensions in pm.

simulating a four-ply and eight-ply unidirectional
composites. As demonstrated later in the Results and
Discussion section, these multi-ply models show that
the underlying plies have significant effects on the
surface residual stresses.

Two thermal loading states were prescribed. The
unit cells were assumed initially at a uniform temper-
ature of 558 °C (state 1). Then in state 2, the temper-
atures were uniformly set to 20 °C by steps of 50 °C
(last step of 38 °C only).

2.4. Evolution of TRS during a fatigue test
In this study, the simplified method of Zarka and
Casier [10] was used. Only the matrix far from the
fibre was taken into account and the behaviour was
then assumed to be that of a metal compound. This
hypothesis clearly simplified the phenomenon, elimin-
ating the effects of softening or hardening. However, in
order to know the trend of the evolution of TRS, this
method could be used. When a structure was loaded in
cyclic plasticity (it was the case of the relaxation of
residual stresses which come from cyclic microdefor-
mations), this method did not lead to the exact
solution, but it was possible to predict a reasonable
indication of the stabilized state and also the behav-
iour to stabilized cycle: elastic or plastic shakedown
(Fig. 7).

The key point of Zarka and Casier’s method consis-
ted of the introduction into the calculations of the
stresses and deformations, a transformed variables
field. It was determined from the stress field by the
relations

o =o —devp=o — s — s° (13)

where o = transformed internal parameter; oo = inter-
nal parameter related to the cinematic ecrouissage;
o = CeP where &P is the tensor of plastic deformations;
p = tensor of residual stresses; s = deviator of tensor
of global stresses; s°' = deviator of tensor of elastic
stresses; C =%H where H is cyclic ecrouissage
modulus of the material. Then, the Mises plastic cri-
terion which governs the evolution of plastic deforma-
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(a), (b) (c) (d)

Traction until Elastic shakedown | Plastic shakedown

rupture

Figure 7 Graphical representation of different responses of a mater-
ial under cyclic loading: (a) purely elastic response; (b) fracture
during the first cycle; (c) elastic shakedown; (d) plastic shakedown.

tions could be rewritten as follows
3 — )’'(s — o) < of (14)

where o, was the true elastic limit (limit of cyclic
elasticity). From Equation 13 this becomes

s —a=s" —o (15)

then, the new criterion of plasticity is
3(s — o) (s — o) <o (16)

This relation determined, in the three dimensional
space of o, a convex domain, limited by a surface
which was constituted by the representative points of
the stress states which correspond to the elastic limit
of the material. This surface was a sphere (radius = G,
= true elastic limit and centre = s°).

In the space of the transformed variables, the inter-
pretation of the plastic criterion was as follows: if the
state of non-linearity (plasticity) of the material was
locally defined by the tensor of parameters o, the
representative point of the stress state had to stay
always in or at the surface of the sphere (radius = o
and centre = s°).

When the load varied as a function of time, the
position and size of the convex domain also varied
(Fig. 8), but still only dependent on parameters which
could be determined by elastic calculations.

When the studied structure was subject to cyclic
loading (F,,;, < F < F,.), the representative point of
the stress state moves to and from the two convex
domains (Cy,;, and C,,.x as shown in Fig. 9).

When the limit of elasticity remained constant, the
sphere radius was still constant (Gg min = Gomax = Co)-
On the other hand, in this hypothesis, the necessary
and sufficient condition for elastic shakedown (and
this stabilization of the level and state of residual stress
for example), for Zarka and Casier’s method, was that
the intersection between two spheres was non-zero
(Fig. 9).

From a mathematical point of view, this condition
could be written as

[3(AS)T(AS)]'? < 20, (17)
where:
ASel = S?‘;ax - S?riin (18)

If this condition was not satisfied, then, there was
plastic shakedown. The representative point of the
elastic shakedown state was obviously in the intersec-
tion area shown on Fig. 9. So, the method consisted of
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Figure 8 Graphical representation of the evolution when the load-
ing condition changes between initial time ¢, and ¢.

A Domain of elastic shakedown state

Oy

Figure 9 Graphical representation of elastic shakedown condition
in the space of the transformed internal parameter o.

checking (by calculation) the elastic shakedown condi-
tion from (a) the mechanical and cyclic properties of
the material (obtained from Equation 11), (b) the in-
itial thermal residual stresses (calculated as shown in
Sections 2.2 and 2.3) and applied loading.

Reference [10] gives more detail about this method
and explains how to obtain an approximation of the
adapted (elastic shakedown) stress state. The major
interest in this method is to provide an approximate
solution using only a few elastic calculations.

2.5. Material properties

In the present work the matrix material was assumed
to be isotropic. The properties of the fibre were as-
sumed to be isotropic or orthotropic as shown in
Table III. Then, effect of temperature dependence are
assumed for both fibre and matrix (Table II). The
properties of the surrounding composites were cal-
culated by two different rules of mixtures (ROM). The
first, easier one, is called ROM 1

P,=PV; + P,(1 — V) (19)

where P, P; and P, were the properties of the com-
posite, the fibre and the matrix respectively. V; was the
volume fraction of the fibre.

The second mixture rule, called ROM 2, was used to
simulate orthotropic properties for the surrounding
composite. It is expressed as follows

E..=ViEr + (1 — Vp)Ey, (20)
Ec,r = EmEf/[VfEm + (1 - Vf)Ef] (21)

TABLE II Temperature-dependent constituent properties for
SCS-6/Ti-15-3

Elastic properties

Temperature E \% o
(O (GPa) (c™ (109
Ti—15-3 matrix (as fabricated)

21.1 92.39 0.36 8.208
204 92.39 0.36 8.946
427 84.81 0.36 9.504
538 58.61 0.36 9.756

SCS-6 Fibre

21.1 393 0.25 3.564

93.3 390 0.25 3.564
204 386 0.25 3.618
316 382 0.25 3.726
427 378 0.25 3.906
538 374 0.25 4.068
649 370 0.25 4.266
760 365 0.25 441
871 361 0.25 4.572

1093 354 0.25 -

TABLE III Thermomechanical properties of the constituents
used in the calculation when no dependence against temperature
was assumed

E; E. \Y oy, o
(GPa) (GPa) (x 10%) (x 10%)
Fibre
SCS-6 [8] 390 390 0.25 3.90 3.90
SCS-6 [9] 407 407 0.15 5.50 2.63
Matrix
Ti—15-3 [8] 92 92 035 9.72 9.72

As the Poisson’s ratios of the two materials are not
too different, the coefficient of thermal expansion is
expressed as follows

o{'c,a = [VfEfO(f + (1 - Vf)Emum]

/IViEe + (I — Vi) Ep] (22)
O, = Ve(l + ve)or + (1 = Ve)(1 + vi) oty
- Vcac,a (23)

The thermal and mechanical properties assumed for
the constituents are given in Tables II and III.

As many different properties for the fibre and the
matrix could be found in the literature, variations of
CTE and Young’s modulus were also investigated in
the range 1 to 15x10°° for the CTE and 10 to
600 GPa for Young’s modulus. This suggested which
properties had a major effect on TRS.

3. Results
3.1. Thermal residual stress calculations in
monocomposites

Yield of the matrix was determined by comparing the
von Mises equivalent stress calculated at room tem-
perature with the room temperature yield stress
(689.5 MPa [5]). When the von Mises equivalent
stress was greater than or equal to the yield stress, the
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yield of the matrix was assumed. The von Mises equiv-
alent stress o, is defined as follows
Oym = [02 + 0 + o7 — 6,0, —

6,0, — 6.0y

+ 3(t3, + . + 2]

No yield of the matrix was calculated to occur
during the fabrication process; thus, only results for
the linear analyses were presented.

The three normal stress components, G,, G, and
o, can be related to different types of damage in the
form of cracking. The radial stress component, c,,
controls interfacial or circumferential cracking. The
most common example of this type of cracking is fibre-
matrix debonding. The hoop stress component, G,
controls radial cracking. The longitudinal or axial
stress component, G;, governs cracking perpendicular
to the fibre direction.

The Turner equations (Section 2.1) led to the follow-
ing results in the case of SiC/Ti—15-3 composite:
o, =5.74x10"°°C " 'o; = — 380 MPa, a,, = 179 MPa.

As previously noted, these results were not sufficient
because there was no information about stresses dis-
tribution and also about stress direction (radial, hoop
or axial). However, it appeared that the matrix was in
tension and fibre in compression. The calculated TRS
were lower than the room temperature yield stress so
there was no matrix yield.

Using the analytical model and also the finite ele-
ment model (FEM) analysis, it was possible to deter-
mine the distribution of the TRS along the radial
direction. Furthermore, using FEM, it was possible to
get information about stresses in the interfacial area.
Both calculations led to the same results but the ana-
lytical solution was faster than FEM so the first one
was used to predict the evolution of stresses and then,
in some cases, the FEM analysis was used to get
information on the stress distribution near the inter-
face. The following results were obtained with both
methods.

3.1.1. Influence of mechanical properties

Most authors report and use the same data for calcu-
lations of TRS in SiC/Ti—15-3 composite. These ap-
pear in Table III [8] and constitute the basic results,
so we compared all the data to those obtained using
this data set. Typical results were shown in Fig. 10.
Results were similar to those already reported by
several authors [8, 13, 14]. The axial stresses in the
matrix were about 220 MPa (tensile). The radial stres-
ses were compressive and about — 120 MPa. The
hoop stresses were compressive in the fibre
(— 150 MPa) and tensile in the matrix ( + 240 MPa).

3.1.1.1. Orthotropy of the fibre. A few authors report
that the fibre is strongly anisotropic (as SiC is elabor-
ated by chemical vapour deposition, a texture of SiC
should exist which leads to transverse isotropic prop-
erties of the fibre) and they propose to use a transverse
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isotropic set of mechanical properties [9] (Table I11).
Results obtained using this set are shown in Fig. 11.
By comparison with Fig. 10, it appears that:

1. The sign of the TRS is the same in both case which
means that tensile stresses are still tensile and com-
pressive ones are still compressive;

2. The absolute values of axial stresses decreases by
about 15% or so, the compressive stresses in the
fibre become less compressive and the tensile stres-
ses in the matrix become less tensile;

3. The absolute values of radial and hoop stresses
increase by about 10% or so, the radial stresses in
both fibre and matrix become less compressive and
the hoop stresses in the matrix become more tensile.

Fibre Matrix

300

100 A
© 0
o
2
» —100
%]
o [¢
% -200

—-300

—400
-500 I T T T T T T

0 20 40 60 80 100 120
Radial distance (um)

Figure 10 Thermal residual stress distribution along radial distance
in a monocomposite determined using analytical and FEM models.
[ axial stress; O radial stress; A hoop stress.

Fibre Matrix

300
200

100 —

0 o
-100 IWW

-200
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Stress (MPa)

-300 £

-400

-500 1 I I I I I
0 20 40 60 80 100 120
Radial distance (um)

Figure 11 Thermal residual stress distribution along radial distance
in a monocomposite determined using analytical and FEM models.
The fibre is assumed to exhibit a transverse anisotropy as reported
by Kagawa [9]. O axial stress; O radial stress; A hoop stress.



However, it is clearly shown in Figs 10 and 11 that
taking into account the anisotropy of the fibre did not
greatly affect the TRS results.

3.1.1.2. Temperature dependence. More and more
authors report thermomechanical properties for both
materials (fibre and matrix) as dependent on temper-
ature. The data reported by these authors are sum-
marized in Table II. The results shown in Fig. 12 are
obtained by FEM analysis.

By comparison with Fig. 10, it appears that:

1. The axial stresses decrease in absolute value by
about 30%, the tensile stresses in the matrix be-
come less tensile and the compressive ones in the
fibre become less compressive;

2. The radial stresses decrease in absolute value also
by about 30%, compressive stresses in the fibre and
in the matrix become less compressive;

3. The hoop stresses decrease in the matrix and be-
come less tensile.

Generally speaking, when the properties depend on
temperature, the level of TRS decreased by approxim-
ately 30% because the Young’s modulus and the CTE
of both materials (i.e. fibre and matrix) were, respec-
tively, lower and higher when temperature increased.
Thus, when no dependence upon temperature was
assumed, the higher Young’s modulus and higher
CTE were taken into account so that the level of the
calculated TRS were higher. However, it also ap-
peared that there was no change of sign.

3.1.1.3. Variations of the mechanical properties. As it
has been shown before there was a large uncertainty in
the mechanical properties of both material and the
calculated stresses could be affected by this uncer-

Fibre Matrix

300

200

100 )

—100 Ire%%e@@-el

-200

Stress (MPa)

-300 T

-400

-500 1 T 1 I T 1
0 20 40 60 80 100 120
Radial distance (um)

Figure 12 Thermal residual stress distribution along radial distance
in a monocomposite determined using analytical and FEM models.
The thermomechanical properties of both materials depend on
temperature as reported by Kagawa [9]. OJ axial stress; O radial
stress; A hoop stress.

tainty. It appeared to be of major interest to know
which were the significant data (Young’s modulus or
coefficient of thermal expansion, and, fibre or matrix
data). In order to get information about this, calcu-
lations were done assuming a large range of proper-
ties. To know the influence of the uncertainty on fibre
Young’s modulus, all the other properties were taken
as constant and the Young’s modulus was varied from
10 to 600 GPa. Two different representations were
used: (i) stresses versus Young’s modulus of the fibre
(or the studied property) and (ii) normalized stresses
versus normalized property as explained below.

The normalized stresses, o,, were (in the case of
fibre Young’s modulus variations): ¢, = (6, — G39¢)/
G390- Where o, was the stress calculated with Young’s
modulus equal x and G349, the stress calculated with
Young’s modulus equal 390 GPa.

In the same condition the normalized property was:
E, = (X — 390)/390.

This last representation permitted us to determine
a slope and this slope was characteristic of the influ-
ence of the parameter’s uncertainty. When the slope
was close to, or higher than, one then the incidence of

300

' B
200 A Aﬁééééééé
A O O I
100 4 I
5 |
— 0
g 3 :
s -100] 9 Q 99999 00 e
@ - o o o o q
o —200 1 |
P _300 . :
2400 "o !
., .
-500 ] | L | T
-600 . . . L . .
0 100 200 300 400 500 600
Young's modulus of the fibre (GPa)
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I g o R
0 g A4
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% é O | fandm
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| |
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Figure 13 Thermal residual stress at 5 pm of the fibre—matrix inter-
face in the fibre and in the matrix as a function of the fibre Young’s

modulus. f, fibre; m, matrix; long, longitudinal; rad, radial; B c[°"¢;
® o4 O clone; O o1d; A ghoor,

6363



the parameter’s uncertainty was very high and recip-
rocally when the value of the slope was less than 0.5 it
meant than the uncertainty on the studied parameter
was very low.

The “normal values” were those reported in
Table I1T and reference [8]. The influence of Young’s
modulus and CTE of both fibre and matrix were
investigated. Results are shown in Figs 13 to 16.

Fig. 13 shows the influence of the uncertainty on
fibre Young’s modulus. From this figure, it appears
that the fibre Young’s modulus does not greatly affect
the TRS level. The axial stresses were the more sensi-
tive but an uncertainty of 100 GPa led to a variation
of less than 30 M Pa on stress level. It is also important
to note that taking into account the surrounding com-
posite increases this effect and it was possible to in-
verse the sign of the radial stresses (compressive for
lower values of E; and tensile for higher values). The
calculated slope on Fig. 13b was about + 0.25 (max-
imum) implying that E; has a very low effect on stress
calculations.

Fig. 14 shows the influence of the uncertainty on
fibre CTE. From this figure, it appears that the fibre

CTE more strongly affects the TRS level than E;. An
uncertainty of 10~ ¢ on o, causes a variation of nearly
30% in the stress level (all the stresses are so affected).
The calculated slope in Fig. 14b is about — 0.70 (max-
imum) implying that o, has a rather high effect on
stress calculations. The negative slope implies that
increasing o causes a decrease in absolute values of
the stresses in both materials. The presence of the
surrounding composite did not change the behaviour.
Uncertainty in the CTE of the fibre significantly af-
fects the axial TRS acting in the fibre whereas influ-
ence on the radial TRS in both fibre and matrix was
limited.

Fig. 15 shows the influence of the uncertainty on
matrix Young’s modulus. From this figure, it appears
that the matrix Young’s modulus greatly affects the
stress level (more than E; and at least as much as o).
The calculated slope in Fig. 15b varies from + 0.60 to

+ 0.95. These values close to 1 signify strong influence
of E,, on TRS calculation. A variation of only 10 GPa
on E, led to a variation of 30 to 50 MPa on TRS
results. The presence of the surrounding composite
did not change the behaviour and the slope remained
constant.
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Fig. 16 shows the influence of uncertainty on matrix
CTE. As logically expected from the previous results,
matrix CTE played the major role for TRS calcu-
lations. The calculated slope in Fig. 16b is higher than
1 (4 1.70). A variation of only 107° on o, led to
a variation of 20 to 60 MPa on TRS results (the
variations were about 20%). The presence of the sur-
rounding composite increases slightly the phenom-
enon (slope = 1.85).

From these results, it clearly appears that the thermo-
mechanical properties of the matrix must be known
with good accuracy to allow comparison of experi-
mental data and calculated TRS results.

3.1.2. Influence of matrix thickness
In a real composite, the distance between two fibres
could vary so that the volume fraction of the matrix
surrounding each fibre was not constant. This point
will be discussed more precisely in Section 3.2 but
a quick approach is made here.

Calculations were done over a large range of
matrix volume fractions (from 0.1 to 0.9) with pro-

perties reported in Table III and reference [8&]
(however, the calculations done with properties
from reference [9] and/or from Table II Iled
to the same results). TRS calculated near the inter-
face (at 3 um from it) in both materials were plot-
ted as a function of matrix volume fraction in
Fig. 17.

The effects of matrix thickness upon TRS were in
agreement with logical expectations. Results show
that TRS decreases when the matrix is thicker. It was
important to note that the fourth boundary condition
of the analytical model presented in Section 2.2 per-
mits prediction of this result. The most affected stres-
ses were the axial ones but a variation of about 10 pm
(about 10% of matrix volume fraction) led to a vari-
ation of the axial stresses of only 10 to 20 MPa. It is
also important to note that the values are more sensi-
tive in the fibre than in the matrix (Fig. 17a and 17b).
However, TRS dependence upon matrix thickness is
not significant provided that the volume fraction of
matrix remains within reasonable bounds, far from the
limit of 1.
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3.1.3. Influence of the surrounding
composite

Many authors, in order to take into account the whole
composite, use a surrounding composite (SC) element
with the properties of the composite and which should
simulate the neighbouring fibre. In a previous study, it
has been shown that this could be a suitable approach
when using only analytical model but it is better to use
a “true composite”, modelled by FEM. However, the
SC method allowed very quick results which could be
compared with the results obtained on the “true com-
posite” with FEM analysis.

The model developed by Mikata and Taya [15]
assumed an infinite thickness for the SC element but
other models and other FEM calculations took thick-
nesses of about 100 to 2000 pm. So it should be of
major interest to study the effect of the SC thickness.
Furthermore, the properties of the SC could be cal-
culated by the rules of mixtures presented in Section
2.5 or taken from the literature. The literature data for
the composite were very poor so that most authors
used rules of mixtures to calculate the properties of the
SC. As shown in Section 2.5, there are two different
rules of mixtures used depending on the nature of the
SC (orthotrope or isotrope) so the calculations were
done using both rules.

3.1.3.1. Thickness of the SC. The presented results are
those obtained using the first rule of mixture, but the
trends were similar using both rules. Fig. 18 shows the
evolution of TRS as a function of SC thickness. The
following interesting features should be highlighted:

1. A minimum thickness of the SC was highlighted
and it was about 500 um. Beyond this critical value,
there is no more variation of the stress level in both
materials and in the three directions;

2. The presence of the SC increases the level of all the
stresses in both materials;

3. The axial and hoop stresses in the matrix increase
and becomes more tensile in the presence of the SC;

4. The axial stresses in the fibre decrease and become
less compressive, implying that the SC supports
a part of axial stresses (and the axial stresses in the
SC were compressive as in the fibre);

5. Radial stresses in both materials become tensile
when the SC is thicker. Transition from compres-
sive to tensile stresses is at a critical SC thickness of
about 120 um (less than the critical thickness re-
quired to get no more variation of the stress level).

With regard to point 1 it was shown that a min-
imum thickness of the SC is required to get results
which are not influenced by the thickness of the SC
and from point 5 it is shown that the radial stresses
change sign (compressive to tensile stresses). As a first
step, these results suggest that the radial stresses in the
“true composite” should be tensile so that the
fibre—matrix debonding was favoured by the presence
of the neighbouring fibres. But, as has been shown in
previous studies [3, 4, 6], taking into account the SC
(to simulate the neighbouring fibres) was not the best
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way because it could lead to different results depend-
ing only on the chosen thickness of the SC. So, before
making conclusions, it is better to study the values
from FEM analysis. However, these results show that
the axial stresses in the matrix increase in the presence
of SC and also show that a minimum thickness of
500 um for the SC is required.

3.1.3.2. Rules of mixtures. Using ROM2 takes into
account the orthotropy of the SC. The same trends as
those previously reported were observed using ROM?2
(rather than ROM1). The major difference was for
radial stresses which remain compressive despite in-
creasing the SC thickness. Furthermore, the tensile
axial stresses in the matrix decreased (by about 30%)
and the axial stresses in the fibre increased in absolute
value (becoming more compressive). Examples of cal-
culated TRS are given in Table IV.

From these results and those previously reported
about the SC thickness it clearly appears that using
a SC to simulate the presence of the neighbouring
fibre was not the best way, as many parameters (SC
thickness, ROM used to determine the properties of
the SC) could influence the results. FEM analysis
appears to be the best way to estimate the effects of the
neighbouring fibres in the “true composite”.

3.2. Thermal residual stress calculations in
“true composite”
The relevant data are those reported in Table IT and
reference [7]. During the elaboration process, the
fibres were held together by molybdenum wire but the
original cubic fibre packing was affected by the pro-
cess. So the fibre packing was not exactly cubic and
not exactly hexagonal. The effect of the fibre packing
was examined first. Generally the fibre was in com-
pression whereas the matrix was in tension. Inspection
of the distribution of TRS obtained by FEM analysis
showed a uniform axial and hoop stress field through-
out the unit cells with non contacting fibres. The



TABLE IV TRS calculated with a SC thickness equal to 1000 pm
using the two different rules of mixtures presented in Section 2.5.
The stresses were those at 3 um of the interface in both materials

Using Using
ROM 1 ROM 2
Stresses in the fibre Axial — 192 — 228
Radial 27 —96
Hoop 27 —96
Stresses in the matrix Axial 257 166
Radial 31 —92
Hoop 301 191

TABLE V Axial and hoop components of TRS (MPa) determined
by FEM analysis for one-dimensional unit cells with uniformly
distributed fibres

Fibre packing arrangement

Cubic Hexagonal
Stresses in the fibre Axial — 260 — 290
Hoop 40 70
Stresses in the matrix Axial 290 340
Hoop 330 360

average values of these stress components are given in
Table V. Radial TRS depended upon position and
direction. Radial TRS profiles are shown as an
example in Fig. 19 for a unidirectional composite with
cubic packing.

Table V shows that the TRS are not strongly affec-
ted by the fibre packing arrangement selected for the
analysis. The TRS were generally 20% higher with the
hexagonal arrangement. So TRS dependence upon
fibre packing arrangement should be regarded as
rather small. In this respect, the problem of contacting
fibres was examined only for a cubic arrangement. It is
worth pointing out that TRS computed for the one-
dimensional composites with no contacting fibres
compare fairly well with those obtained for the mono-
composites with SC. Nevertheless, the one-dimen-
sional composite should be regarded as an assembly of
juxtaposed monocomposites with no contacting
fibres. However, it is also worth pointing out that TRS
computed for the one-dimensional composites high-
lights a very high level of stress at the free surface of
the composite. This phenomenon increased when in-
creasing the number of plies used. This fact has al-
ready been reported by several authors [5, 7, 8, 14].

When the distance between two fibres decreased
then the TRS varied. The axial stresses were the most
affected and it was possible to identify two different
areas in the composite: (i) between the fibres, where
the level of axial stresses increased and (ii) outside the
fibres pack, where the level of axial stress decreased.
The hoop stresses were not significantly affected but
the same trend was observed for axial stress. Further-
more, the radial stresses varied from positive (tensile)
to negative (compressive) values in and outside the
fibres pack. It was not possible as in ceramic matrix
composites [ 3] to identify separate positive and nega-
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tive areas of axial stresses. The incidence of the dis-
tance between two fibres is shown in Fig. 20.

The high surface stresses were not affected and
remained very high. In fact, these results were in good
agreement with those obtained and reported in Sec-
tion 3.1.2 about influence of matrix volume fraction.
When the distance between two fibres decreased it
meant that the matrix volume fraction between these
fibres decreased so that the results obtained were
similar when the distance decreased or when the
matrix volume fraction decreased. However, while the
trends were the same, the data were slightly different
and also it was not possible in Section 3.1.2 to predict
the axial stress level outside the fibre packing.

3.3. Relaxation of TRS during a fatigue test
In this section the model described in Section 2.4 was
used and the thermomechanical data used for both
constituents were those reported in Table III and
reference [8]. As we did not know the true elastic
cyclic limit as a function of the applied stress, we used
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an average one in the calculations so that the data
obtained as a function of the applied stress could be
used only to show and estimate the trends and not to
give data to be compared with experimental ones.
Typical results are shown in Figs 21 and 22.
From Fig. 21, the following interesting features
should be highlighted:

1. When the applied load increased the relaxation of
TRS increased, so the level of TRS in the three
directions decreased;

2. The evolution of TRS as a function of applied load
was not linear, so when the applied load was close
to the maximum yield stress (689.5 MPa by [5]),
there was no more variation of the relaxation of
TRS.

The minimum stress which it was possible to reach
after 5 cycles was about 65% of the initial stress.

From Fig. 22, the following interesting features
should be highlighted:

1. The relaxation of axial TRS was very high for the
first cycles and later became lower;

2. The relaxation of the hoop TRS was lower than for
the axial TRS and it appeared to be a more linear
decrease.
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Figure 21 Evolution of TRS after five cycles as a function of applied
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Figure 22 Evolution of TRS during a fatigue test as a function of
the number of cycles. O clo"e; A choop,
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From these results it appears that the relaxation of
the TRS is very quick so that, after only 100 cycles
more than half of TRS relaxes. Furthermore, the axial
stresses, which were assumed to play an important
role on mechanical behaviour of the material and
especially on fatigue behaviour, were the most quickly
relaxed (more than 50% relaxation after only 50
cycles).

After about 1000 cycles no more TRS relaxation
occurred and a one-third value of the initial TRS was
reached.

4. Conclusions

The residual stress field induced in MMC by cooling
down from the processing temperature was evaluated
on monocomposites and one-dimensional composites
with various fibre packing arrangements. An analyti-
cal model was used for the determination of TRS on
monocomposites. TRS in monocomposites and one-
dimensional composites were then computed using
MARC and MENTAT finite element code.

In general, tensile TRS were observed in the matrix
of monocomposites, whereas the fibre was in compres-
sion.

Calculations for monocomposites showed that the
trends for axial and hoop TRS were not affected by the
presence of a surrounding composite, whereas the
radial stresses could turn tensile. The same observa-
tion could be done for one-dimensional composites. In
fact, in one-dimensional composites, the TRS com-
puted with no contacting fibres were in excellent
agreement with those established for monocomposites
with a surrounding composite. The TRS were not
significantly affected by the use of a cubic or
hexagonal fibre packing arrangement.

Some differences were observed when the distance
between two fibres varied. When fibres were closely in
contact, higher tensile stresses arose in the inner
matrix volumes bounded by neighbouring fibres
whereas the periphery was subject to significant lower
tensile stresses. On the basis of this result it could be
foreseen that cracks will initiate preferentially from the
interior of one-dimensional specimens and especially
in an area where fibres were close to other ones.

A minimum thickness (in order that the thickness
did not affect the TRS calculations) of the surrounding
composite of about 500 pm was also determined.

Calculations for monocomposites showed that TRS
were not greatly affected by uncertainty in fibre
Young’s modulus. The TRS were affected to a similar
degree by uncertainty in fibre CTE and in matrix
Young’s modulus. Moreover, increasing fibre CTE led
to a decrease of TRS, whereas increasing matrix
Young modulus led to an increase of TRS. The matrix
CTE uncertainty was the most critical parameter.
Thus, the calculated TRS should not be regarded as
exact but only the trend could be used when the
properties of the matrix (and also to a lesser extent
those of the fibre) are not precisely known.

During a fatigue test, relaxation of TRS increased
when the number of cycles increased and also when
the load increased (but this phenomenon was more



sensitive to the number of cycles than to the applied
loading).

More than half of TRS were relaxed after only 100
cycles and the axial stresses were the most quickly
relaxed. After about 1000 cycles no more relaxation
occurred and the value of TRS reached was about
one-third of the initial value.
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